windsorlogo.gif (4904 bytes) 341title.jpg (31626 bytes) windsorlogo.gif (4904 bytes)
outline.jpg (5022 bytes)

general.jpg (4685 bytes)

marking.jpg (5359 bytes)

notes.jpg (4738 bytes)

dates.jpg (5179 bytes)

links.jpg (4618 bytes)

downloads.jpg (4255 bytes)

animations.jpg (4364 bytes)

home.jpg (3415 bytes)

Course Outline
Tentative Course Outline - Winter 2006
(Numbers in parentheses refer to chapters in Atkins 6th Edition which will be useful reference material)

A new course outline is under development for Winter 2006.
I.	Review of Quantum Mechanics
	A.	Development and evolution of quantum theory (11.1)
	B.	Wave-particle duality (11.2)
	C.	Schroedinger equation (11.3)
	D.	Wavefunctions: The Born interpretation and their physical meaning (11.4, 11.5)
	E.	Heisenberg Uncertainty Principle (11.6)
	F.	Applying the Schroedinger Equation
		1.	Hydrogen Atom (13.1)
		2.	Electron and Nuclear Spins (12.8)
		3.	Born-Oppenheimer Approximation (14.0)
		4.	Translation: Particle in a Box (12.1)
		5.	Rotation: Rigid Rotor (12.6)
		6.	Vibration: Harmonic Oscillator (12.4, 12.5)

II.	Interaction of Electromagnetic Radiation with Matter
	A.	Electromagnetic Radiation (16.1)
	B.	Electromagnetic Spectrum (16.1)
	C.	Absorption and Emission of Radiation (16.1)
	D.	Line Intensity, Line Width, Broadening & the Doppler Effect (16.2, 16.3)

III.	Experimental Methods: General Features (16.1)
	A.	Absorption experiments
	B.	Dispersing elements: Prisms and Gratings
	C.	Fourier transform spectroscopy (lower frequencies)
	D.	Interferometers (higher frequencies)
	E.	Summary of Absorption Experiments over the EM Spectrum
	F.	Scattering (Raman techniques)
	G.	Other experimental techniques (ATR, AAS, ICP-AES, photolysis)
	H.	Magnetic resonance techniques

IV.	Molecular Symmetry
	A.	Symmetry elements (15.1)
	B.	Point Groups (15.2)
	C.	Character Tables (15.4)
	D.	Consequences of Symmetry: Dipole Moments and Chirality (15.3)
	E.	Molecular orbitals and symmetry (15.4)
	F.	Selection rules and symmetry (15.5)

V.	Rotational Spectroscopy
	A.	Moments of Inertia for differently shaped molecules (16.4)
	B.	Rotational IR, Millimetre Wave and Microwave Spectra (16.5, 16.6)
		1.	Diatomic & Linear Polyatomic Molecules
		2.	Symmetric Rotors
		3.	Stark Effect
		4.	Asymmetric Rotors and Spherical Molecules
		5.	Applications in Astronomy
	C.	Rotational Raman Spectroscopy (16.7, 16.8)
	D.	Structure Determination from Rotational Spectroscopy

VI.	Vibrational Spectroscopy
	A.	Molecular Vibrations (16.9)
	B.	Diatomic molecules
		1.	IR Spectra (16.9, 16.10)
		2.	Raman Spectra (16.13)
		3.	Anharmonicity (16.11)
		4.	Vibration-Rotation (Rovibrational) Spectroscopy (16.12)
	C.	Polyatomic molecules (16.14)
		1.	Vibrational Selection Rules
		2.	Vibration-Rotation (Rovibrational) Spectroscopy (16.15)
		3.	Raman Spectra (16.16)
		4.	Anharmonicity
	D.	Applications

VII.	Electronic Spectroscopy
	A.	Atomic Spectroscopy
		1.	Energy Levels in Atoms (13.2, 13.3, 13.4, 13.5)
		2.	Coupling of Angular Momenta (13.7, 13.8)
		3.	Term Symbols and Selection Rules (13.9)
		4.	Russell-Saunders Coupling (13.9)
		5.	Alkali Metal Atoms (13)
		6.	Hydrogen Atom and Others (13)
		7.	Magnetic fields: Zeeman effect (13.10)
	B.	Diatomic Molecules
		1.	Molecular Orbital Theory (14.4, 14.5)
		2.	Classification of Electronic States (14.6)
		3.	Vibrational Course Structure (17.1)
		4.	Franck-Condon Principle (17.1)
		5.	Transitions, Fluorescence and Phosphorescence (17.2, 17.3)
		6.	Rotational Fine Structure
	C.	Polyatomic Molecules
		1.	Some examples
		2.	Crystal field and ligand field Molecular Orbital Theory
		3.	Selection Rules

VIII.	Photoelectron Spectroscopy, Related Techniques and Lasers
	A.	Photoelectron Spectroscopy (17.8)
	B.	Auger Electron and XPS 
	C.	X-ray fluorescence spectroscopy (17.10)
	D.	EXAFS
	E.	Introduction to Lasers (17.5, 17.6, 17.7)
End of course.

Last Updated Tuesday January 03, 2006
Copyright Rob Schurko 2002-2006.